Short-chain fatty acid metabolism, apoptosis, and Apc-initiated tumorigenesis in the mouse gastrointestinal mucosa.

نویسندگان

  • L H Augenlicht
  • G M Anthony
  • T L Church
  • W Edelmann
  • R Kucherlapati
  • K Yang
  • M Lipkin
  • B G Heerdt
چکیده

Short-chain fatty acids (SCFAs) are physiological regulators of growth and differentiation in the gastrointestinal tract, and we have previously shown that apoptosis induced in colonic cell lines by these compounds is dependent on their metabolism by B-oxidation in the mitochondria (B. G. Heerdt et al., J. Biol. Chem., 266: 19120-19126, 1991; Cancer Res., 54: 3288-3293, 1994). Because tumors initiated by an inherited Apc mutation have been reported to be linked to decreases in apoptosis in the flat mucosa of the gastrointestinal tract, the aims were to determine whether elimination of efficient metabolism of SCFAs affected apoptosis in the gastrointestinal mucosa of the mouse, and whether this altered tumorigenesis initiated by an inherited Apc mutation. We, therefore, generated mice that have a chain-terminating mutation in the Apc gene and that were either wild-type for SCFA metabolism, or deficient, due to homozygous deletion of the gene (Scad) that encodes the enzyme short-chain acyl dehydrogenase, which catalyzes the first step in SCFA B-oxidation. Scad+/+ mice maintained on a wheat bran-fiber-supplemented diet gained significantly more weight than mice maintained on AIN76A, but this was eliminated by the Scad mutation, demonstrating that uptake and metabolism of SCFAs in the gastrointestinal tract can be a significant energy source. As predicted, on either AIN76A or wheat bran diet, the Scad mutation almost completely eliminated apoptosis in the flat mucosa of the proximal colon and reduced apoptosis by 50% in the distal colon compared with littermates that were wild-type for Scad. The mutation also reduced apoptosis by approximately 50% in the duodenum in AIN76A-fed mice. These reductions in apoptosis had no effect on incidence, frequency, or site specificity of tumors initiated by the Apc mutation. Therefore, the metabolism of SCFAs by the gastrointestinal mucosa plays a role in modulating apoptosis, but a general decrease in apoptosis in the mucosa of the gastrointestinal tract is not linked to gastrointestinal tumorigenesis initiated by an inherited Apc mutation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liver fatty acid-binding protein (L-Fabp) modifies intestinal fatty acid composition and adenoma formation in ApcMin/+ mice.

Evidence suggests a relationship between dietary fat intake, obesity, and colorectal cancer, implying a role for fatty acid metabolism in intestinal tumorigenesis that is incompletely understood. Liver fatty acid-binding protein (L-Fabp), a dominant intestinal fatty acid-binding protein, regulates intestinal fatty acid trafficking and metabolism, and L-Fabp deletion attenuates diet-induced obes...

متن کامل

Symposium: Diet, Growth Factors and Cancer Short Chain Fatty Acids and Colon Cancer

The development of intestinal cancer involves complex genetic and epigenetic alterations in the intestinal mucosa. The principal signaling pathway responsible for the initiation of tumor formation, the APC– catenin–TCF4 pathway, regulates both cell proliferation and colonic cell differentiation, but many other intrinsic and extrinsic signals also modulate these cell maturation pathways. The cha...

متن کامل

Biochemical and Molecular Action of Nutrients Antagonism of Arachidonic Acid Is Linked to the Antitumorigenic Effect of Dietary Eicosapentaenoic Acid in Apc Mice

The multiple intestinal neoplasia (Apc) mouse possesses a germline mutation at codon 850 of the adenomatous polyposis coli (Apc) gene resulting in the formation of a nonfunctional truncated gene product. Following a somatic mutation of the remaining wild-type allele, mice spontaneously develop ;40–50 tumors throughout the intestinal tract. This mouse model has been used to study intestinal tumo...

متن کامل

Short-chain fatty acid-initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function.

Butyrate, a short-chain fatty acid produced during microbial fermentation of fiber, induces growth arrest, differentiation, and apoptosis of colonic epithelial cells in vitro, and our prior work has shown that this induction is tightly linked to mitochondrial activity. Here we demonstrate that 12 h following induction, SW620 human colonic carcinoma cells accumulate simultaneously in G0-G1 and G...

متن کامل

Butyrate-Induced Transcriptional Changes in Human Colonic Mucosa

BACKGROUND Fermentation of dietary fiber in the colon results in the production of short chain fatty acids (mainly propionate, butyrate and acetate). Butyrate modulates a wide range of processes, but its mechanism of action is mostly unknown. This study aimed to determine the effects of butyrate on the transcriptional regulation of human colonic mucosa in vivo. METHODOLOGY/PRINCIPAL FINDINGS ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 59 23  شماره 

صفحات  -

تاریخ انتشار 1999